Partially Directed nil-Temperley-Lieb Algebras

Maya Sankar
mentor: Dr. Tanya Khovanova
PRIMES 2016 Conference

May 21, 2016

nil-Temperley-Lieb (nTL) Algebras

- Algebra based on a graph G. One generator per vertex: x_{1}, x_{2}, x_{3}.

nil-Temperley-Lieb (nTL) Algebras

- Algebra based on a graph G. One generator per vertex: x_{1}, x_{2}, x_{3}.
- $x_{i}^{2}=0$.

■ For two adjacent vertices i and $j, x_{i} x_{j} x_{i}=x_{j} x_{i} x_{j}=0$.
■ For two nonadjacent vertices i and $j, x_{i} x_{j}=x_{j} x_{i}$.

- A monomial that does not equal 0 is called irreducible.

nil-Temperley-Lieb (nTL) Algebras

- Algebra based on a graph G. One generator per vertex: x_{1}, x_{2}, x_{3}.
- $x_{i}^{2}=0$.
\square For two adjacent vertices i and $j, x_{i} x_{j} x_{i}=x_{j} x_{i} x_{j}=0$.
■ For two nonadjacent vertices i and $j, x_{i} x_{j}=x_{j} x_{i}$.
- A monomial that does not equal 0 is called irreducible.

Example
$x_{3} x_{1} x_{2} x_{3}=x_{1} x_{3} x_{2} x_{3}=0$ is reducible.
$x_{2} x_{1} x_{3} x_{2}=x_{2} x_{3} x_{1} x_{2}$ is irreducible.

Dimension of the Algebra

The dimension of the algebra is the number of distinct irreducible monomials.

Dimension of the Algebra

The dimension of the algebra is the number of distinct irreducible monomials.
G_{1} :

G_{2} :

In G_{1}, these monomials are
$1, x_{1}, x_{2}, x_{3}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{3} x_{2}, x_{1} x_{2} x_{3}, x_{1} x_{3} x_{2}$ and the dimension is 10. Not counted are repeated monomials ($x_{2} x_{1}=x_{1} x_{2}$ and $x_{3} x_{1}=x_{1} x_{3}$) and reducible monomials $\left(x_{2} x_{3} x_{2}=0\right.$ and $\left.x_{3} x_{2} x_{3}=0\right)$.

Dimension of the Algebra

The dimension of the algebra is the number of distinct irreducible monomials.
G_{1} :

G_{2} :

In G_{1}, these monomials are
$1, x_{1}, x_{2}, x_{3}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}, x_{3} x_{2}, x_{1} x_{2} x_{3}, x_{1} x_{3} x_{2}$ and the dimension is 10. Not counted are repeated monomials ($x_{2} x_{1}=x_{1} x_{2}$ and $x_{3} x_{1}=x_{1} x_{3}$) and reducible monomials $\left(x_{2} x_{3} x_{2}=0\right.$ and $\left.x_{3} x_{2} x_{3}=0\right)$.

In G_{2}, there is an infinite irreducible monomial:

$$
\begin{aligned}
& x_{1} x_{2} x_{3} x_{1} x_{4} x_{5} x_{1} x_{2} x_{3} x_{1} x_{4} x_{5} \cdots \\
= & x_{1} x_{3} x_{2} x_{1} x_{5} x_{4} x_{1} x_{3} x_{2} x_{1} x_{5} x_{4} \cdots
\end{aligned}
$$

Dimension of the Algebra

Theorem

The nTL algebra on G is finite iff G is a Dynkin diagram.

nil-Temperley-Lieb Algebras on the Path Graph

■ Number the vertices 1 to n.

- Dimension of the algebra known to be C_{n+1}, the $n+1^{\text {th }}$ Catalan number.

nil-Temperley-Lieb Algebras on the Path Graph

■ Number the vertices 1 to n.

- Dimension of the algebra known to be C_{n+1}, the $n+1^{\text {th }}$ Catalan number.
- Each monomial can be uniquely written as a series of decreasing runs, with increasing peaks and valleys. $\left(x_{3} x_{2} x_{1}\right)\left(x_{5} x_{4} x_{3} x_{2}\right)\left(x_{7} x_{6}\right)$
- This is the lexicographically smallest representation of the monomial.

nil-Temperley-Lieb Algebras on the Path Graph

■ Number the vertices 1 to n.

- Dimension of the algebra known to be C_{n+1}, the $n+1^{\text {th }}$ Catalan number.
- Each monomial can be uniquely written as a series of decreasing runs, with increasing peaks and valleys. $\left(x_{3} x_{2} x_{1}\right)\left(x_{5} x_{4} x_{3} x_{2}\right)\left(x_{7} x_{6}\right)$
- This is the lexicographically smallest representation of the monomial.
- If peaks don't increase:
$x_{4} x_{3} x_{2} x_{1} x_{4} x_{3}=x_{4} x_{3} x_{2} x_{4} x_{1} x_{3}=x_{4} x_{3} x_{4} x_{2} x_{1} x_{3}=0$

Motivation

- Map to the set of permutations on $n+1$ elements: if x_{i} is taken to the transposition of the $i^{\text {th }}$ and $i+1^{\text {th }}$ elements.
- By this construction, the elements of the algebra are 321-avoiding permutations.

Motivation

- Map to the set of permutations on $n+1$ elements: if x_{i} is taken to the transposition of the $i^{\text {th }}$ and $i+1^{\text {th }}$ elements.
- By this construction, the elements of the algebra are 321-avoiding permutations.
- Definitions similar to those of Coxeter groups. The elements of the algebra correspond to elements of Coxeter groups satisfying certain properties.

Partially Directed $n T L$ Algebras

- Based on a graph G with some directed and some undirected edges.
- $x_{i}^{2}=0$.
- For two nonadjacent vertices i and $j, x_{i} x_{j}=x_{j} x_{i}$.

■ For two vertices i and j connected by an undirected edge, $x_{i} x_{j} x_{i}=x_{j} x_{i} x_{j}=0$.

Partially Directed $n T L$ Algebras

- Based on a graph G with some directed and some undirected edges.
- $x_{i}^{2}=0$.

■ For two nonadjacent vertices i and $j, x_{i} x_{j}=x_{j} x_{i}$.
■ For two vertices i and j connected by an undirected edge, $x_{i} x_{j} x_{i}=x_{j} x_{i} x_{j}=0$.
■ For two vertices i and j with a directed edge from i to j, $x_{i} x_{j} x_{i}=0$.

Partially Directed nTL Algebras

- Based on a graph G with some directed and some undirected edges.
- $x_{i}^{2}=0$.

■ For two nonadjacent vertices i and $j, x_{i} x_{j}=x_{j} x_{i}$.
■ For two vertices i and j connected by an undirected edge, $x_{i} x_{j} x_{i}=x_{j} x_{i} x_{j}=0$.
■ For two vertices i and j with a directed edge from i to j, $x_{i} x_{j} x_{i}=0$.
The example has relations $x_{2} x_{3} x_{2}=0$ and $x_{5} x_{4} x_{5}=0$, but not $x_{3} x_{2} x_{3}=0$ or $x_{4} x_{5} x_{4}=0$.

Dimensions of Partially Directed nTL algebras

Theorem

The nTL algebra on a partially directed graph G is finite iff G is a path graph with all directed edges going in the same direction.

Maximally Directed n TL Algebras

Maximally Directed n TL Algebras

Each monomial can be written uniquely as a series of decreasing runs with increasing valleys. For example,

$$
\left(x_{5} x_{4} x_{3} x_{2} x_{1}\right)\left(x_{7} x_{6} x_{5} x_{4} x_{3}\right)\left(x_{6} x_{5} x_{4}\right)\left(x_{7}\right) .
$$

There are $n+1$ choices for the run with valley x_{1} :

$$
1, \quad x_{1}, \quad x_{2} x_{1}, \quad \ldots, \quad x_{n} x_{n-1} \ldots x_{2} x_{1} .
$$

Similarly, there are n choices for the run with valley $x_{2}, n-1$ choices for the run with valley x_{3}, and so on.

Maximally Directed nTL Algebras

Theorem

There are $(n+1) \times n \times(n-1) \times \ldots \times 2=(n+1)$! elements in the maximally directed algebra.

Maximally Directed n TL Algebras

Theorem

There are $(n+1) \times n \times(n-1) \times \ldots \times 2=(n+1)$! elements in the maximally directed algebra.

Mapping the generator x_{i} to the transposition of i and $i+1$ in the set of permutations on $n+1$ elements, each irreducible monomial corresponds to a different element of the set of permutations on $n+1$ elements.

Peaks and Valleys

Every decreasing run has a peak and valley: $x_{5} x_{4} x_{3} x_{2} x_{1}$.

Peaks and Valleys

Every decreasing run has a peak and valley: $x_{5} x_{4} x_{3} x_{2} x_{1}$.
Every partially directed $n T L$ algebra is a subalgebra of the maximally directed nTL algebra. Thus,

Theorem

The monomials of a partially directed nTL algebra are sequences of decreasing runs with increasing valleys.

Conditions on the Peaks

Theorem

If there is an undirected edge from i to $i+1$ and there are two peaks with (from left to right) $p_{1} \geq i+1$ and $p_{2}=i+1$, there must be a peak of i between p_{1} and p_{2}.

Conditions on the Peaks

Theorem

If there is an undirected edge from i to $i+1$ and there are two peaks with (from left to right) $p_{1} \geq i+1$ and $p_{2}=i+1$, there must be a peak of i between p_{1} and p_{2}.

For example, when there is an undirected edge between 3 and 4 $(i=3), x_{5} x_{4} x_{3} x_{2} x_{1} x_{3} x_{2} x_{4}$ is irreducible, but $x_{5} x_{4} x_{3} x_{2} x_{1} x_{2} x_{4}$ is not.

This theorem completely describes the irreducible monomials in the partially directed nTL algebras.

Conditions on the Peaks

Corollary

There is no condition on the peaks of the maximally directed algebra.

Conditions on the Peaks

Corollary

There is no condition on the peaks of the maximally directed algebra.

Corollary
In the $n T L$ algebra, peaks must be increasing.

Conditions on the Peaks

Corollary

There is no condition on the peaks of the maximally directed algebra.

Corollary
In the $n T L$ algebra, peaks must be increasing.
Corollary

In the algebra based on the "undirected-directed" graph shown, peaks must strictly increase or remain higher than k.

Special Cases

Dimension: $C_{n}+C_{n+1}-1$, where C_{n} is the $n^{\text {th }}$ Catalan number.

Special Cases

Dimension: $C_{n}+C_{n+1}-1$, where C_{n} is the $n^{\text {th }}$ Catalan number.

Dimension: $\binom{2 n}{n}=(n+1) C_{n}$

Future research

- Find a general formula to calculate the dimension of any partially directed $n T L$ algebra.

Future research

- Find a general formula to calculate the dimension of any partially directed $n T L$ algebra.
- Further study which permutations are represented by a partially directed $n T L$ algebra.

Future research

- Find a general formula to calculate the dimension of any partially directed nTL algebra.
- Further study which permutations are represented by a partially directed nTL algebra.

■ A directed edge between i and j means changing the relation $x_{i} x_{j} x_{i}=x_{j} x_{i} x_{j}=0$ to $x_{i} x_{j} x_{i}=0$. What if we changed it to $x_{i} x_{j} x_{i}=x_{j} x_{i} x_{j} ?$

Acknowledgements

■ Dr. Khovanova for mentoring this project

- Professor Postnikov for suggesting this project
- The PRIMES program

