Partially Directed nil-Temperley-Lieb Algebras

Maya Sankar mentor: Dr. Tanya Khovanova PRIMES 2016 Conference

May 21, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

nil-Temperley-Lieb (nTL) Algebras

• Algebra based on a graph *G*. One generator per vertex: x_1, x_2, x_3 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

nil-Temperley-Lieb (nTL) Algebras

- Algebra based on a graph *G*. One generator per vertex: x_1, x_2, x_3 .
- $x_i^2 = 0.$
- For two adjacent vertices *i* and *j*, $x_i x_j x_i = x_j x_i x_j = 0$.
- For two nonadjacent vertices *i* and *j*, $x_i x_j = x_j x_i$.
- A monomial that does not equal 0 is called irreducible.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

nil-Temperley-Lieb (nTL) Algebras

- Algebra based on a graph *G*. One generator per vertex: x_1, x_2, x_3 .
- $x_i^2 = 0.$
- For two adjacent vertices *i* and *j*, $x_i x_j x_i = x_j x_i x_j = 0$.
- For two nonadjacent vertices i and j, $x_i x_j = x_j x_i$.
- A monomial that does not equal 0 is called irreducible.

Example

 $x_3x_1x_2x_3 = x_1x_3x_2x_3 = 0$ is reducible.

 $x_2 x_1 x_3 x_2 = x_2 x_3 x_1 x_2$ is irreducible.

The dimension of the algebra is the number of distinct irreducible monomials.

The dimension of the algebra is the number of distinct irreducible monomials.

In G_1 , these monomials are

1, x_1 , x_2 , x_3 , x_1x_2 , x_1x_3 , x_2x_3 , x_3x_2 , $x_1x_2x_3$, $x_1x_3x_2$ and the dimension is 10. Not counted are repeated monomials $(x_2x_1 = x_1x_2 \text{ and } x_3x_1 = x_1x_3)$ and reducible monomials $(x_2x_3x_2 = 0 \text{ and } x_3x_2x_3 = 0)$.

The dimension of the algebra is the number of distinct irreducible monomials.

In G_1 , these monomials are

1, x_1 , x_2 , x_3 , x_1x_2 , x_1x_3 , x_2x_3 , x_3x_2 , $x_1x_2x_3$, $x_1x_3x_2$ and the dimension is 10. Not counted are repeated monomials $(x_2x_1 = x_1x_2 \text{ and } x_3x_1 = x_1x_3)$ and reducible monomials $(x_2x_3x_2 = 0 \text{ and } x_3x_2x_3 = 0)$.

In G_2 , there is an infinite irreducible monomial:

 $x_1x_2x_3x_1x_4x_5x_1x_2x_3x_1x_4x_5\ldots$

 $= x_1 x_3 x_2 x_1 x_5 x_4 x_1 x_3 x_2 x_1 x_5 x_4 \dots$

Theorem

The nTL algebra on G is finite iff G is a Dynkin diagram.

イロト 不得 トイヨト イヨト

nil-Temperley-Lieb Algebras on the Path Graph

- Number the vertices 1 to *n*.
- Dimension of the algebra known to be C_{n+1} , the $n + 1^{\text{th}}$ Catalan number.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

nil-Temperley-Lieb Algebras on the Path Graph

- Number the vertices 1 to *n*.
- Dimension of the algebra known to be C_{n+1} , the $n + 1^{\text{th}}$ Catalan number.
- Each monomial can be uniquely written as a series of decreasing runs, with increasing peaks and valleys.
 (x₃x₂x₁) (x₅x₄x₃x₂) (x₇x₆)
 - This is the lexicographically smallest representation of the monomial.

nil-Temperley-Lieb Algebras on the Path Graph

- Number the vertices 1 to *n*.
- Dimension of the algebra known to be C_{n+1} , the $n + 1^{\text{th}}$ Catalan number.
- Each monomial can be uniquely written as a series of decreasing runs, with increasing peaks and valleys.
 (x₃x₂x₁) (x₅x₄x₃x₂) (x₇x₆)
 - This is the lexicographically smallest representation of the monomial.

If peaks don't increase:

 $x_4x_3x_2x_1x_4x_3 = x_4x_3x_2x_4x_1x_3 = x_4x_3x_4x_2x_1x_3 = 0$

Motivation

- Map to the set of permutations on n+1 elements: if x_i is taken to the transposition of the ith and i + 1th elements.
 - By this construction, the elements of the algebra are 321-avoiding permutations.

Motivation

- Map to the set of permutations on n + 1 elements: if x_i is taken to the transposition of the i^{th} and $i + 1^{\text{th}}$ elements.
 - By this construction, the elements of the algebra are 321-avoiding permutations.
- Definitions similar to those of Coxeter groups. The elements of the algebra correspond to elements of Coxeter groups satisfying certain properties.

- Based on a graph G with some directed and some undirected edges.
- $x_i^2 = 0.$
- For two nonadjacent vertices *i* and *j*, $x_i x_j = x_j x_i$.
- For two vertices *i* and *j* connected by an undirected edge, x_ix_jx_i = x_jx_ix_j = 0.

- Based on a graph G with some directed and some undirected edges.
- $x_i^2 = 0.$
- For two nonadjacent vertices *i* and *j*, $x_i x_j = x_j x_i$.
- For two vertices *i* and *j* connected by an undirected edge, x_ix_jx_i = x_jx_ix_j = 0.
- For two vertices *i* and *j* with a directed edge from *i* to *j*, $x_i x_j x_i = 0$.

- Based on a graph G with some directed and some undirected edges.
- $x_i^2 = 0.$
- For two nonadjacent vertices *i* and *j*, $x_i x_j = x_j x_i$.
- For two vertices *i* and *j* connected by an undirected edge, x_ix_jx_i = x_jx_ix_j = 0.
- For two vertices *i* and *j* with a directed edge from *i* to *j*, $x_i x_j x_i = 0$.

The example has relations $x_2x_3x_2 = 0$ and $x_5x_4x_5 = 0$, but not $x_3x_2x_3 = 0$ or $x_4x_5x_4 = 0$.

Dimensions of Partially Directed nTL algebras

Theorem

The nTL algebra on a partially directed graph G is finite iff G is a path graph with all directed edges going in the same direction.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Each monomial can be written uniquely as a series of decreasing runs with increasing valleys. For example,

$$(x_5x_4x_3x_2x_1)(x_7x_6x_5x_4x_3)(x_6x_5x_4)(x_7).$$

There are n + 1 choices for the run with valley x_1 :

1, x_1 , x_2x_1 , ..., $x_nx_{n-1}...x_2x_1$. Similarly, there are *n* choices for the run with valley x_2 , n-1 choices for the run with valley x_3 , and so on.

Theorem

There are $(n + 1) \times n \times (n - 1) \times ... \times 2 = (n + 1)!$ elements in the maximally directed algebra.

Theorem

There are $(n + 1) \times n \times (n - 1) \times ... \times 2 = (n + 1)!$ elements in the maximally directed algebra.

Mapping the generator x_i to the transposition of i and i + 1 in the set of permutations on n + 1 elements, each irreducible monomial corresponds to a different element of the set of permutations on n + 1 elements.

Peaks and Valleys

Every decreasing run has a peak and valley: $x_5x_4x_3x_2x_1$.

Every decreasing run has a peak and valley: $x_5x_4x_3x_2x_1$.

Every partially directed nTL algebra is a subalgebra of the maximally directed nTL algebra. Thus,

Theorem

The monomials of a partially directed nTL algebra are sequences of decreasing runs with increasing valleys.

Theorem

If there is an undirected edge from i to i + 1 and there are two peaks with (from left to right) $p_1 \ge i + 1$ and $p_2 = i + 1$, there must be a peak of i between p_1 and p_2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

If there is an undirected edge from i to i + 1 and there are two peaks with (from left to right) $p_1 \ge i + 1$ and $p_2 = i + 1$, there must be a peak of i between p_1 and p_2 .

For example, when there is an undirected edge between 3 and 4 (i = 3), $x_5x_4x_3x_2x_1x_3x_2x_4$ is irreducible, but $x_5x_4x_3x_2x_1x_2x_4$ is not.

This theorem completely describes the irreducible monomials in the partially directed nTL algebras.

Corollary

There is no condition on the peaks of the maximally directed algebra.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Corollary

There is no condition on the peaks of the maximally directed algebra.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Corollary

In the nTL algebra, peaks must be increasing.

Corollary

There is no condition on the peaks of the maximally directed algebra.

Corollary

In the nTL algebra, peaks must be increasing.

Special Cases

Dimension: $C_n + C_{n+1} - 1$, where C_n is the n^{th} Catalan number.

(ロ)、(型)、(E)、(E)、 E) の(の)

Special Cases

$$\stackrel{1}{\longrightarrow} \stackrel{2}{\longrightarrow} \stackrel{3}{\longrightarrow} \stackrel{n-1}{\longrightarrow} \stackrel{n}{\longrightarrow} \stackrel{$$

Dimension: $C_n + C_{n+1} - 1$, where C_n is the n^{th} Catalan number.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dimension: $\binom{2n}{n} = (n+1)C_n$

 Find a general formula to calculate the dimension of any partially directed nTL algebra.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Future research

- Find a general formula to calculate the dimension of any partially directed nTL algebra.
- Further study which permutations are represented by a partially directed nTL algebra.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Future research

- Find a general formula to calculate the dimension of any partially directed nTL algebra.
- Further study which permutations are represented by a partially directed nTL algebra.
- A directed edge between *i* and *j* means changing the relation $x_i x_j x_i = x_j x_i x_j = 0$ to $x_i x_j x_i = 0$. What if we changed it to $x_i x_j x_i = x_j x_i x_j$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Acknowledgements

- Dr. Khovanova for mentoring this project
- Professor Postnikov for suggesting this project

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The PRIMES program